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BACKGROUND

The air in contact with the ocean's surface is saturated with water vapor. A few
meters above the surface, the air is not usually saturated so there is a decrease in water
vapor pressure from the surface to some value well above the surface. This decrease in
water vapor pressure leads to a decrease in the refractive index of the air that forms an
"evaporation" duct, a channel in which electromagnetic (EM) energy can propagate over
great ranges, significantly influencing radio and radar transmissions (Hitney, et al., 1987).

Evaporation ducts exist over the ocean, to some degree, almost all of the time. The
height varies from 1 or 2 meters in northern latitudes during winter nights to as much as
40 meters in equatorial latitudes during summer days. It should be emphasized that the
evaporation duct "height" is not a height below which an antenna must be located to have
extended propagation, but a value that relates to the duct's strength or its ability to trap
EM radiation.

Evaporation duct heights may be calculated by measuring wind speed, sea-surface
temperature, air temperature, and relative humidity. A critical component of the calcula-
tion is the relative difference between air and sea-surface temperatures. This technical
report examines results from an at-sea test of a noncontact infrared, resistance tempera-
ture device (IR/RTD) for use in measuring the air/sea-surface temperature differences.

AIR AND SEA-SURFACE TEMPERATURES

In the absence of warm temperature advection, the marine surface layer is slightly
unstable due to the different heat capacities of air and water. In other words, the air
temperature is slightly cooler than the sea-surface temperature. This unstable condition is
by far the most common situation over open ocean areas. This unstable condition may be
seen in figure 1, that illustrates the annual air/sea-surface temperature difference distribu-
tion from the National Oceanic and Atmospheric Administration (NOAA) ocean buoy
42022 located at latitude 32.3 north, longitude 75.2 west (Paulus, 1984).

The elements of air and sea-surface temperature measured by transiting ships have
been, for the most part, sufficiently accurate for general meteorological and climatologi-
cal purposes. Measurement errors in air and sea-surface temperatures are made however,
and these errors may occur in a number of ways. For example, air temperatures reported
by ships in the tropics appear to be consistently high under sunny conditions due to poor
instrument exposure and heat radiation from adjacent metal surfaces.
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Figure 1. Annual air/sea-temperature difference
distribution from NOAA ocean buoy 42002.

Sea-surface temperatures have typically been determined by measuring the seawater
intake for engine cooling with readings taken by engine-room personnel from analog
gauges located in the powerplant spaces. Calibration and reading errors are common.
These water inlets do not measure surface temperature because they are located well
below the surface and are also subject to thermal contamination.

Compounding the problem of air and sea-surface temperature differences is the fact
that air and sea-surface temperature measurements are made using two different sensors
that are most likely not calibrated together.

The errors in measurements produce an air/sea-surface temperature difference distri-
bution such as illustrated in figure 2 (Paulus, 1984). Figure 2 was constructed from over
100 years of shipboard meteorological measurements from within Marsden square 82, a
10 degree latitude by 10 degree longitude square containing NOAA buoy 42002. By
comparing figure 1 with figure 2, a bias toward stable, anomalous conditions by ship-
board measurements is evident.
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Figure 2. Annual air/sea-temperature difference
distribution from Marsden square 82.

EVAPORATION DUCTS

A critical component of the calculation of evaporation duct height is the relative differ-
ence between air and sea-surface temperatures, therefore any errors in temperature meas-
urements could be reflected in the evaporation duct height.

For example, figure 3 illustrates the evaporation duct height distribution calculated
from shipboard measurements of air/sea-surface temperature differences as shown in
figure 2. Of particular note is the large occurrence of evaporation duct heights in excess

of 40 meters, which in turn leads to overly optimistic propagation ranges. Since such a
distribution of duct heights in nature would be extremely suspect, the accuracy of meas-
urements used for evaporation duct calculations may not be sufficient.
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Figure 3. Evaporation duct height distribution.

EXPERIMENTAL TECHNIQUE

As a possible solution to overcoming air and sea-surface temperature measurement
errors, Olson (1989) describes an IR/RTD system manufactured by Everest lnterscience,
Inc., that is small, easy, and quick to use. Since Olson has demonstrated the device's
measurement accuracy, he recommended further tests to evaluate the practicality of using
the IRIRTD and determine acceptable shipboard environmental operating conditions.

To this end, two IR/RTD systems were purchased and placed onboard the USS Ranger
(CV 61) for a 12-day at-sea period, from 12 to 24 July 1991. Instructions in the system's
proper use and maintenance were provided as described by Olson, but no undue emphasis
was placed on special handling beyond that for any hand-held electronic instrument.

While certain "best observation locations" for air and sea-surface temperature meas-
urements were suggested by Olson, their use may not be practical on an operational ship
because of the safety restrictions of movement during flight operations. For this reason,
only general observation location guidelines were given, e.g., avoid locations adjacent to
engineering air discharge vents.

Hourly observations were made from three locations: (a) the 09 level forward air
defense station, a normal meteorological observation point during flight operations and
under simulated battle conditions; (b) the flight deck; (c) and the hangar bay. The mete-
orological observers recorded hourly readings of air temperature from both the IRIRTD
and a hand-held psychrometer, sea-surface temperatures obtained from the IR/RTD, and

4



seawater injection temperature reported by the engineering watch officer. In addition,
measurements of surface wind speed, wind direction, and relative humidity were recorded
for use in evaporation duct height calculations.

RESULTS

DEVICE RELIABILITY

On 13 July, one device ceased to operate while in use at the forward air defense
station. The sea-surface temperature indicator showed a constant 90.4°F and the air
temperature indicator showed a rapid and continuous increase. It should be noted that
the SPS-48 radar is located just above this position and two UHF transmitting antennas
are located on either side of the 09 level position. While it was not known if the three
radio-frequency (RF) sources damaged the IR/RTD electronics, the 09 level was aban-
doned as a test site for the remainder of the test period. This device remained inopera-
tive.

The LR/RTD air temperature was measured with a small gold-foil-covered thermistor
located at the end of a short rod, which is pulled from the housing. After one days' use,
the observer was no longer able to pull the rod to its full extent from the housing nor was
he able to push it back into the housing. The lack of full-rod extension, however,
appeared to have no effect on the temperature measurements.

The device is provided with a wrist strap that is attached to the handle with a plastic
swivel. On July 17, the wrist strap mysteriously disappeared. Without the wrist strap, the
observer had to hold the device at all times, thereby preventing the use of his hand for
other purposes. The wrist strap from the inoperative device was substituted for the
remainder of the test period.

The device liquid crystal display (LCD) was not back-lit for nighttime use. The observ-
er therefore had to carry a flashlight. These two items, plus the hand-held psychrometer
and on occasion, a sound-powered telephone set, made using the shipboard ladders
extremely challenging. It should be noted that the IR temperature can be stored in the
device's memory and retrieved and displayed at a later time. The air temperature cannot
be stored in the device's memory.

OTHER DEVICE USES

While this test was to determine the practicality of the IR/RTD for use in evaporation
duct calculations, two other uses were identified by the meteorological personnel.

A major forecasting parameter for flight operations is the time fog will dissipate. The
forecast time is highly dependent upon the stability of the air that in turn, depends upon
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the temperature of the sea-surface. It was noticed that )n many occasions, the forecast
time lagged the actual dissipation time. Using the IR/RTD for sea-surface temperature
measurements, "warm tongues" of surface water were identified that were not evident
from the seawater intake temperature. Knowledge of these warm tongues significantly
improved the forecast for fog dissipation.

Overheating of vital electronic equipment is always a concern for operational person-
nel. During the test period, an engineering failure resulted in a loss of air conditioning to
the meteorological spaces housing the Tactical Environmental Support System (TESS)
computers. The IR/RTD was used to sense the temperature of the computer cabinets,
allowing the operators to safely turn off the computers when the maximum operating
temperature was reached.

AIR AND SEA-SURFACE TEMPERATURE DATA

Figure 4 illustrates the difference between the air temperatures measured with the
hand-held psychrometer and the air temperatures measured by the IR/RTD over the test
period. While in the mean, the difference was 0.5°F., individual differences range from
-4.7 ° to +8.8 0 F. Although not known at this time, one explanation for the extremes in
temperature difference could be due to the difficulty of reading a liquid-in-glass ther-
mometer vice a digital display. Interestingly the hand-held psychrometer tended to record
higher air temperatures than the IR/RTD. This is consistent with the historically higher
air temperatures discussed in the section on air and sea-surface temperatures.

Figure 5 illustrates the difference between seawater temperatures measured frcm the
engineering seawater intake and the sea-surface temperatures measured by the IR/RTD
over the test period. In the mean, the temperature difference was 0.6°F., that on first
impression was quite good, but individual differences range from -6.0 ° to +11.0°F. As
with the air temperature, the seawater intake temperature was almost universally warmer
than that measured by the IR/RTD. This was expected due to thermal contamination in
the engineering spaces. In addition, because the atmosphere is generally unstable, there
is a greater heat loss from the surface water to the air than that occurring at depth from
mixing within the water column.
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Figure 4. Air temperature differences (0 F) as measured with
a hand-held electric psychrometer and the IR/RTD.
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Figure 5. Sea-surface temperature differences (*F) as measured
by seawater intake gauge and the IR/RTD.
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Figure 6 illustrates the air/sea-surface temperature differences calculated from the
hand-held psychrometer/seawater intake gauge. In the mean, the temperature difference
was -1.09°F with individual differences ranging from -5°F to +5°F. For the most part,
slightly unstable conditions were observed throughout the time period with stable condi-
tions appearing in the mid to late afternoons.
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Figure 6. Air/sea temperature differences (OF) (psychrometer/
engineering intake gauge).

Figure 7 illustrates the air/sea-surface temperature differences calculated from the
IR/RTD. In the mean, the temperature difference was -0.96 0 F with individual differences
ranging from -80F to +4.5"F.

Good agreement between the two measurement systems suggested the atmosphere was
typically unstable. Measurements from both systems indicated an increase in stability
toward the early- and mid-afternoon hours. This apparent stability increase may have
been due to the air temperature measurements being contaminated by the heat island
effects of the ship.
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Figure 7. Air/sea temperature differences (*F) (IR/RTD).

The figures in appendix A illustrate the day-by-day air temperatures, sea-surface tem-
peratures, and air/sea-surface temperature differences as measured by the two systems;
and the computed evaporation duct heights.

Of particular note was the seawater temperature as measured by the engineering
gauge. Often times the water temperature remained constant for several hours, changed
sharply, and then returned to a constant value. Figure 8 is a particularly striking exam-
ple. The temperature changes occurred on the hours that engineering personnel change
shifts, with the temperature remaining constant for the normal four-hour watch period.
Since this temperature pattern was not seen by the IR/RTD temperature readings, the
ability of the seawater intake temperatu;e to represent an actual sea-surface temperature
was questionable. Given this artificiality, however, it was surprising to see the close agree-
ment between the air/sea-surface temperature differences between the two systems. It
appeared that, for at least this measurement period, air/sea-surface temperature differ-
ences measured using the engineering intake and the psychrometer did indeed repre-
sented good measurements.
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Figure 8. Sea-surface temperatures (*F) of 17 July 1991.

EVAPORATION DUCT CALCULATIONS

To compensate for observational errors that produce this anomalous evaporation duct
heights (figure 3), Paulus (1984) introduced a modification to the evaporation duct height
calculation algorithm that restores the normal open-ocean unstable atmospheric condi-
tions. Figure 9 illustrates the distribution of evaporation duct heights calculated from the
observed data of both measurement systems without applying the stability compensation
technique. Comparing figures 9 and 3, the same trend of abnormally high occurrence of
evaporation duct heights equal to or exceeding 40 meters is quite evident.

Recalculating the evaporation duct heights with the Paulus stability modification pro-
duces a distribution illustrated in figure 10. A distribution of duct heights is obtained that
agrees with the long-term climatological distribution of duct heights for the area and time
period (Patterson, 1987).
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Figure 9. Evaporation duct height distribution. No stability
correction applied.

Patterson (1984) has shown that while most commonly used evaporation duct height
models perform equally well under statistically averaged meteorological parameters, indi-
vidual evaporation duct height calculations are extremely dependent on individual mete-
orological parameters. Therefore, while the statistical mean of the two measurement
systems examined appear to be consistent, the fluctuations in extremes are of major
concern. Any measurement errors introduced are equally of concern.
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Figure 10. Evaporation duct height distribution. Stability
correction applied.

Figure 11 illustrates the evaporation duct height differences as calculated from the
temperature measurements provided by the two systems. Again, the Paulus stability
modification was applied to the duct height calculations. The mean duct height differ-
ences over the 12-day time period were less that 1 meter with extremes of 2 meters or
less. A further investigation of surface pressures, wind directions, and relative humidities
during this period indicates the entire time period was spent under the influence of a
single maritime air mass. Therefore, it is realistic to observe differences between the
measured evaporation duct height distribution and climatology.
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Figure 11. Evaporation duct height (m) differences.

While accurate evaporation duct height calculations are the goal of any temperature
measurement system, the influence of the evaporation duct upon EM propagation is the

ultimate criterion for judging a successful system. In current operational propagation
models, the evaporation duct influence is characterized by its height. In the next genera-
tion of propagation models to be introduced into the Fleet, profiles of refractivity in the
surface layer will be required for direct calculation of propagation effects. These profiles
will be calculated from the same parameters as is the evaporation duct height.

Figure 12 illustrates two modified refractivity profiles taken from the evaporation duct
heights calculated from the temperature measurements of the two systems for 0300 GMT,

13 July 1991. This was a time period that represented an extreme in duct height differ-
ences between the two sensor systems.
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for 0300 GMT, 13 July 1991. (Psychrometer/engine and
IR/RTD sensors.)

These two profiles were provided as input parameters to the Radio Physical-Optic
(RPO) propagation program currently being developed at NCCOSC RDT&E Division (Hit-

ney, 1991). Figures 13 through 15 show predicted propagation losses versus ranges for

these two environments for an EM system varying in frequency from 3 GHz to 15 GHz. It

should be stressed again that the evaporation duct height is a measure of duct strength,

not a height below which an antenna must be placed in order to be influenced by the

evaporation duct. The frequency-dependent effects of the evaporation duct become more

noticeable as the frequency increases between these three figures.

At 15 GHz, the difference in propagation loss between the two environments at a

range of 40 kilometers is approximately 10 dB. Assuming an operational scenario of a

radar with a performance threshold of 155 dB, this path-loss difference would translate

into a detection range of 27.2 kilometers for the 4.7-meter evaporation duct environment
versus a 40-kilometer detection range for the 6.2-meter evaporation duct. Assuming these

two duct heights were mean heights, it may be argued that for this scenario a detection

range difference of 12.0 kilometers is extremely significant.

It has been shown by Dockery (1987), figure 16, that EM signal fluctuations of

±10 dB from the mean are common. These fluctuations emphasize the probabilistic

nature of detection. In the mean, relative performance is reasonably predictable (Patter-

son, 1984; Hitney & Vieth, 1990); but a single detection event is not likely to exactly

verify the predicted range, even with perfect environmental data. Improvements in
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sensors, observational techniques, and data quality control will decrease the variance
about the mean. However, the temperatures measured by the IR/RTD produced the lower
evaporation duct heights and therefore, would produce the most conservative EM system
performance predictions.

3000-MHz PROPAGATION LOSS

TRANSMIT HT 5m
RECEIVER HT 5m
POLARIZATION HOR
ANTENNA TYPE SinXX
VERTICAL BW 3 dog
ELEVATION ANG 0 dog

z
0

0
,I, 4.7m EVAP DUCT - IR/RTD

6.2m EVAP DUCT
PSYCH/ENGINE

8 8 16 24 32 48

RANGE (kin)

Figure 13. 3-GHz propagation loss within a 4.7-
and 6.2-meter evaporation ducting environment.
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Figure 16. Measured signal strengths about mean signal strength
predictions for various propagation models (Dockery, 1987).

CONCLUSIONS AND RECOMMENDATIONS

a. Environmental measurements indicate the experimental period was under the influ-
ence of a single air and water mass. While a small meteorological disturbance passed
through the area on 19 July, it was not significant enough to justify a differing air mass.
There appears to be no significant difference in the statistical distribution of evaporation
duct heights calculated from air and sea-surface temperatures as measured by the
psychrometer/engineering intake gauge method and the IR/RTD method.

To separate the influence a single air mass has upon evaporation duct height calcula-
tions from the evaporation duct height calculations produced from two different tempera-
ture sensing systems, another evaluation should be performed. This second period should
ensure that different air and water masses are experienced.

b. While not supported from the evaporation duct height calculations of this experi-
mental period due to the clearly artificial trend in sea-surface temperature reported from
the seawater intake, the IR/RTD is the preferred instrument for measuring sea-surface
temperature.

c. The nonoperational IR/RTD should be examined to determine the cause of its fail-
ure. If found sensitive to RF emissions normally associated with an operational ship, a
change in the screening capability of the housing or some sort of grounding technique
should be investigated to reduce this sensitivity.
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d. The protruding nature of the air-temperature sensor called for increased vigilance
in its use. In addition, the mechanism for deploying the sensor failed to operate. The
possible relocation of the sensor to a recessed location on the housing or a technique to
lubricate the retractable rod should be investigated.

e. An inclusion of a back-lite LCD or an internal light would improve readability
during hours of darkness. As an alternative, the air temperature could be stored in the
device's memory, as is the IR temperature, to be recalled and displayed once inside a
lighted area.

f. The wrist strap and attaching plastic swivel did not withstand normal shipboard

use. A modification to the current strap anchor to prevent the inadvertent separation of
the strap should be addressed. To free the operator's hands for other tasks and to
improve the portability of the IR/RTD, a "shoulder holster" carrying case should be pro-
vided.

g. The IR/RTD provides benefits other than data for the calculation of evaporation
duct heights. For example, it is useful to determine sea-surface temperatures for use in
fog-dissipation forecasts and, in the extreme, it is useful to assess the temperatures of
sensitive electronic equipment.
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APPENDIX A

AIR AND SEA-SURFACE TEMPERATURES, AIR/SEA-SURFACE
TEMPERATURE DIFFERENCES, AND COMPUTED EVAPORATION

DUCT HEIGHTS, 12-24 JULY 1991
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